Search results
Results from the WOW.Com Content Network
The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system: that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-metre (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry.
The electron electric dipole moment d e is an intrinsic property of an electron such that the potential energy is linearly related to the strength of the electric field: U = − d e ⋅ E . {\displaystyle U=-\mathbf {d} _{\rm {e}}\cdot \mathbf {E} .}
The hyperpolarizability can be calculated using quantum chemical calculations developed ... in isotropic media is defined as the ratio of the induced dipole moment ...
The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1] Note that the local electric field seen by a molecule is generally different from the macroscopic electric field that would be measured externally.
In chemistry, polarity is a separation of electric charge leading to a molecule or its chemical groups having an electric dipole moment, with a negatively charged end and a positively charged end. Polar molecules must contain one or more polar bonds due to a difference in electronegativity between the bonded atoms.
Typical dipole moments for simple diatomic molecules are in the range of 0 to 11 D. Molecules with symmetry point groups or containing inversion symmetry will not have a permanent dipole moment, while highly ionic molecular species have a very large dipole moment, e.g. gas-phase potassium bromide, KBr, with a dipole moment of 10.41 D. [3] A proton and an electron 1 Å apart have a dipole ...
The transition dipole moment is useful for determining if transitions are allowed under the electric dipole interaction. For example, the transition from a bonding π {\displaystyle \pi } orbital to an antibonding π ∗ {\displaystyle \pi ^{*}} orbital is allowed because the integral defining the transition dipole moment is nonzero.
In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1]