Search results
Results from the WOW.Com Content Network
The heat that is added to the gas goes only partly into heating the gas, while the rest is transformed into the mechanical work performed by the piston. In the first, constant-volume case (locked piston), there is no external motion, and thus no mechanical work is done on the atmosphere; C V is used.
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
These include gas mixtures, solutions and alloys, or heterogenous materials such as milk, sand, granite, and concrete, if considered at a sufficiently large scale. The specific heat capacity can be defined also for materials that change state or composition as the temperature and pressure change, as long as the changes are reversible and gradual.
All values refer to 25 °C and to the thermodynamically stable standard state at that temperature unless noted. Values from CRC refer to "100 kPa (1 bar or 0.987 standard atmospheres)".
The higher heating value takes into account the latent heat of vaporization of water in the combustion products, and is useful in calculating heating values for fuels where condensation of the reaction products is practical (e.g., in a gas-fired boiler used for space heat). In other words, HHV assumes all the water component is in liquid state ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Since the molar heat capacity of a substance is the specific heat c times the molar mass of the substance M/N its numerical value is generally smaller than that of the specific heat. Paraffin wax , for example, has a specific heat of about 2500 J⋅K −1 ⋅kg −1 but a molar heat capacity of about 600 J⋅K −1 ⋅mol −1 .