Search results
Results from the WOW.Com Content Network
Pyrimidine (C 4 H 4 N 2; / p ɪ ˈ r ɪ. m ɪ ˌ d iː n, p aɪ ˈ r ɪ. m ɪ ˌ d iː n /) is an aromatic, heterocyclic, organic compound similar to pyridine (C 5 H 5 N). [3] One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has nitrogen atoms at positions 1 and 3 in the ring.
Purines and pyrimidines make up the two groups of nitrogenous bases, including the two groups of nucleotide bases. The purine bases are guanine (G) and adenine (A) which form corresponding nucleosides- deoxyribonucleosides ( deoxyguanosine and deoxyadenosine ) with deoxyribose moiety and ribonucleosides ( guanosine , adenosine ) with ribose moiety.
Each of the base pairs in a typical double-helix DNA comprises a purine and a pyrimidine: either an A paired with a T or a C paired with a G. These purine-pyrimidine pairs, which are called base complements, connect the two strands of the helix and are often compared to the rungs of a ladder. Only pairing purine with pyrimidine ensures a ...
About Wikipedia; Contact us; Contribute Help; ... Pyrimidines are organic compounds that contain the pyrimidine base structure.
Thymine (/ ˈ θ aɪ m ɪ n /) (symbol T or Thy) is one of the four nucleotide bases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidine nucleobase. In RNA, thymine is replaced by the nucleobase uracil.
It is a base excision repair enzyme specific for pyrimidine dimers. It is then able to cut open the AP site. Another type of repair mechanism that is conserved in humans and other non-mammals is translesion synthesis. Typically, the lesion associated with the pyrimidine dimer blocks cellular machinery from synthesizing past the damaged site.
Each base has three potential edges where it can interact with another base. The Purine bases have 3 edges which are able to hydrogen bond. Those are known as the Watson-Crick edge(WC), the Hoogsteen edge(H), and the Sugar edge(S). Pyrimidine bases also have three hydrogen-bonding edges. [28]
Purine–pyrimidine base-pairing of AT or GC or UA (in RNA) results in proper duplex structure. The only other purine–pyrimidine pairings would be AC and GT and UG (in RNA); these pairings are mismatches because the patterns of hydrogen donors and acceptors do not correspond.