Search results
Results from the WOW.Com Content Network
A variety of basic concepts is used in the study and analysis of logical reasoning. Logical reasoning happens by inferring a conclusion from a set of premises. [3] Premises and conclusions are normally seen as propositions. A proposition is a statement that makes a claim about what is the case.
Such reasoning itself, or the chain of intermediates representing it, has also been called an argument, more fully a deductive argument. In many cases, an argument can be known to be valid by means of a deduction of its conclusion from its premises but non-deductive methods such as Venn diagrams and other graphic procedures have been proposed.
A subfield of linear logic focusing on the study of affine transformations and their implications in logical reasoning. affirmative proposition A proposition that asserts the truth of a statement, as opposed to negating it. [7] [8] [9] affirming the consequent A logical fallacy in which a conditional statement is incorrectly used to infer its ...
Computational logic is the branch of logic and computer science that studies how to implement mathematical reasoning and logical formalisms using computers. This includes, for example, automatic theorem provers , which employ rules of inference to construct a proof step by step from a set of premises to the intended conclusion without human ...
Intermediate conclusions or sub-conclusions, where a claim is supported by another claim that is used in turn to support some further claim, i.e. the final conclusion or another intermediate conclusion: In the following diagram, statement 4 is an intermediate conclusion in that it is a conclusion in relation to statement 5 but is a premise in ...
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule : when p =T (the hypothesis selects the first two lines of the table), we see (at column-14) that p ∨ q =T.
The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion. Typically, a rule of inference preserves truth, a semantic property. In many-valued logic, it preserves a general ...
Inferences are steps in reasoning, moving from premises to logical consequences; etymologically, the word infer means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that in Europe dates at least to Aristotle (300s BCE).