Search results
Results from the WOW.Com Content Network
Memory-mapped I/O is preferred in IA-32 and x86-64 based architectures because the instructions that perform port-based I/O are limited to one register: EAX, AX, and AL are the only registers that data can be moved into or out of, and either a byte-sized immediate value in the instruction or a value in register DX determines which port is the source or destination port of the transfer.
One of the major improvements the PCI Local Bus had over other I/O architectures was its configuration mechanism. In addition to the normal memory-mapped and I/O port spaces, each device function on the bus has a configuration space, which is 256 bytes long, addressable by knowing the eight-bit PCI bus, five-bit device, and three-bit function numbers for the device (commonly referred to as the ...
In contrast, in direct memory access (DMA) operations, the CPU is uninvolved in the data transfer. The term can refer to either memory-mapped I/O (MMIO) or port-mapped I/O (PMIO). PMIO refers to transfers using a special address space outside of normal memory, usually accessed with dedicated instructions, such as IN and OUT in x86 architectures.
For system architectures in which port I/O is a distinct address space from the memory address space, an IOMMU is not used when the CPU communicates with devices via I/O ports. In system architectures in which port I/O and memory are mapped into a suitable address space, an IOMMU can translate port I/O accesses.
Memory-mapped I/O, an alternative to port I/O; a communication between CPU and peripheral device using the same instructions, and same bus, as between CPU and memory; Virtual memory, technique which gives an application program the impression that it has contiguous working memory, while in fact it is physically fragmented and may even overflow ...
Any transfer of information to or from the CPU/memory combo, for example by reading data from a disk drive, is considered I/O. [1] The CPU and its supporting circuitry may provide memory-mapped I/O that is used in low-level computer programming, such as in the implementation of device drivers, or may provide access to I/O channels.
[1] Reading a hardware register in "peripheral units" — computer hardware outside the CPU — involves accessing its memory-mapped I/O address or port-mapped I/O address with a "load" or "store" instruction, issued by the processor.
A GPIO pin's state may be exposed to the software developer through one of a number of different interfaces, such as a memory-mapped I/O peripheral, or through dedicated IO port instructions. Some GPIOs have 5 V tolerant inputs: even when the device has a low supply voltage (such as 2 V), the device can accept 5 V without damage.