Search results
Results from the WOW.Com Content Network
Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction, or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration, and distillation. Mass transfer is used by different scientific disciplines for different processes ...
Mass wasting, also known as mass movement, [1] is a general term for the movement of rock or soil down slopes under the force of gravity. It differs from other processes of erosion in that the debris transported by mass wasting is not entrained in a moving medium, such as water, wind, or ice.
All of the conservation laws listed above are local conservation laws. A local conservation law is expressed mathematically by a continuity equation, which states that the change in the quantity in a volume is equal to the total net "flux" of the quantity through the surface of the volume. The following sections discuss continuity equations in ...
When Newton's laws are applied to rotating extended bodies, they lead to new quantities that are analogous to those invoked in the original laws. The analogue of mass is the moment of inertia, the counterpart of momentum is angular momentum, and the counterpart of force is torque. Angular momentum is calculated with respect to a reference point ...
The law of conservation of mass and the analogous law of conservation of energy were finally generalized and unified into the principle of mass–energy equivalence, described by Albert Einstein's equation =. Special relativity also redefines the concept of mass and energy, which can be used interchangeably and are defined relative to the frame ...
Mass transfer in a system is governed by Fick's first law: 'Diffusion flux from higher concentration to lower concentration is proportional to the gradient of the concentration of the substance and the diffusivity of the substance in the medium.' Mass transfer can take place due to different driving forces. Some of them are: [12]
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction , thermal convection , thermal radiation , and transfer of energy by phase changes .
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]