enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Initiator protein - Wikipedia

    en.wikipedia.org/wiki/Initiator_protein

    The initiator proteins are the proteins that recognize a specific DNA sequence within the origin of replication. The origin of replication is the site where the helicase attaches to the template strand and starts to unwind the DNA into two strands.

  3. Iteron - Wikipedia

    en.wikipedia.org/wiki/Iteron

    The replication initiator protein (Rep) plays a key role in initiation of replication in plasmids. In its monomer form, Rep binds an iteron and promotes replication. The protein itself is known to contain two independent N-terminal and C-terminal globular domains that subsequently bind to two domains of the iteron.

  4. Origin of replication - Wikipedia

    en.wikipedia.org/wiki/Origin_of_replication

    More than five decades ago, Jacob, Brenner, and Cuzin proposed the replicon hypothesis to explain the regulation of chromosomal DNA synthesis in E. coli. [18] The model postulates that a diffusible, trans-acting factor, a so-called initiator, interacts with a cis-acting DNA element, the replicator, to promote replication onset at a nearby origin.

  5. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    [11] [10] In E. coli the primary initiator protein is Dna A; in yeast, this is the origin recognition complex. [27] Sequences used by initiator proteins tend to be "AT-rich" (rich in adenine and thymine bases), because A-T base pairs have two hydrogen bonds (rather than the three formed in a C-G pair) and thus are easier to strand-separate. [28]

  6. DnaA - Wikipedia

    en.wikipedia.org/wiki/DnaA

    DnaA is a protein that activates initiation of DNA replication in bacteria. [1] Based on the Replicon Model, a positively active initiator molecule contacts with a particular spot on a circular chromosome called the replicator to start DNA replication. [2] It is a replication initiation factor which promotes the unwinding of DNA at oriC. [1]

  7. Licensing factor - Wikipedia

    en.wikipedia.org/wiki/Licensing_factor

    A licensing factor is a protein or complex of proteins that allows an origin of replication to begin DNA replication at that site. Licensing factors primarily occur in eukaryotic cells, since bacteria use simpler systems to initiate replication. However, many archaea use homologues of eukaryotic licensing factors to initiate replication. [1]

  8. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    The major enzymatic functions carried out at the replication fork are well conserved from prokaryotes to eukaryotes, but the replication machinery in eukaryotic DNA replication is a much larger complex, coordinating many proteins at the site of replication, forming the replisome.

  9. Replisome - Wikipedia

    en.wikipedia.org/wiki/Replisome

    The combination of template DNA and primer RNA is referred to as 'A-form DNA' and it is thought that clamp loading replication proteins (helical heteropentamers) want to associate with A-form DNA because of its shape (the structure of the major/minor groove) and chemistry (patterns of hydrogen bond donors and acceptors).