Search results
Results from the WOW.Com Content Network
Liquid water and ice emit radiation at a higher rate than water vapour (see graph above). Water at the top of the troposphere, particularly in liquid and solid states, cools as it emits net photons to space. Neighboring gas molecules other than water (e.g. nitrogen) are cooled by passing their heat kinetically to the water.
To good approximation, they obey the so-called deep-water-wave dispersion law: =, irrespective of the stratification of the Sun, where is the angular frequency, is the surface gravity and = / is the horizontal wavenumber, [23] and tend asymptotically to that relation as .
Diagram showing displacement of the Sun's image at sunrise and sunset Comparison of inferior and superior mirages due to differing air refractive indices, n. Atmospheric refraction is the deviation of light or other electromagnetic wave from a straight line as it passes through the atmosphere due to the variation in air density as a function of height. [1]
The ionosphere is a layer of partially ionized gases high above the majority of the Earth's atmosphere; these gases are ionized by cosmic rays originating on the sun. When radio waves travel into this zone, which commences about 80 kilometers above the earth, they experience diffraction in a manner similar to the visible light phenomenon described above. [1]
The frequency drifts from higher to lower values because it depends on the electron density, and the shock propagates outward away from the Sun through lower and lower densities. By using a model for the Sun's atmospheric density, the frequency drift rate can then be used to estimate the speed of the shock wave.
Although the solar corona is a source of extreme ultraviolet and X-ray radiation, these rays make up only a very small amount of the power output of the Sun (see spectrum at right). The spectrum of nearly all solar electromagnetic radiation striking the Earth's atmosphere spans a range of 100 nm to about 1 mm (1,000,000 nm).
The visible spectrum, approximately 380 to 740 nanometers (nm), [1] shows the atmospheric water absorption band and the solar Fraunhofer lines. The blue sky spectrum contains light at all visible wavelengths with a broad maximum around 450–485 nm, the wavelengths of the color blue.
A demonstration of the 589 nm D 2 (left) and 590 nm D 1 (right) emission sodium D lines using a wick with salt water in a flame. The Fraunhofer C, F, G′, and h lines correspond to the alpha, beta, gamma, and delta lines of the Balmer series of emission lines of the hydrogen atom. The Fraunhofer letters are now rarely used for those lines.