Search results
Results from the WOW.Com Content Network
SLM-based additive manufacturing of nickel superalloys still poses significant challenges due to these alloys’ complex composition. With multiple alloying elements and high aluminum/titanium fraction, these materials, when consolidated through SLM form various secondary phases, which affects the processability and leading to weakness within ...
Originally developed to produce oxide-dispersion strengthened (ODS) nickel- and iron-base superalloys for applications in the aerospace industry, [1] MA has now been shown to be capable of synthesizing a variety of equilibrium and non-equilibrium alloy phases starting from blended elemental or pre-alloyed powders. [2]
Oxide dispersion strengthened alloys (ODS) are alloys that consist of a metal matrix with small oxide particles dispersed within it. They have high heat resistance, strength, and ductility . Alloys of nickel are the most common but includes iron aluminum alloys.
Inconel alloys are oxidation- and corrosion-resistant. When heated, Inconel forms a thick, stable, passivating oxide layer protecting the surface from further attack. Inconel retains strength over a wide temperature range, attractive for high-temperature applications where aluminum and steel would succumb to creep as a result of thermally ...
Nickel is preeminently an alloy metal, and its chief use is in nickel steels and nickel cast irons, in which it typically increases the tensile strength, toughness, and elastic limit. It is widely used in many other alloys, including nickel brasses and bronzes and alloys with copper, chromium, aluminium, lead, cobalt, silver, and gold ( Inconel ...
Nickel aluminide refers to either of two widely used intermetallic compounds, Ni 3 Al or NiAl, but the term is sometimes used to refer to any nickel–aluminium alloy. These alloys are widely used because of their high strength even at high temperature, low density, corrosion resistance, and ease of production. [ 1 ]
Nimonic alloys typically consist of more than 50% nickel and 20% chromium with additives such as titanium and aluminium. The main use is in gas turbine components and extremely high performance reciprocating internal combustion engines.
Propellant tank additive manufacturing, exploiting the advantage of the process to deposit titanium and titanium alloys without melting the feedstock material. [ 15 ] Thrust chambers, combustion chambers and rocket nozzles , where the process gives the benefit of unlimited dimensions and combination of different materials, which is also ...