enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    Those with reflection in the planes through the axis, with or without reflection in the plane through the origin perpendicular to the axis, are the symmetry groups for the two types of cylindrical symmetry. Any 3D shape (subset of R 3) having infinite rotational symmetry must also have mirror symmetry for every plane through the axis. Physical ...

  3. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).

  4. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    The standard orientation, where the xy-plane is horizontal and the z-axis points up (and the x- and the y-axis form a positively oriented two-dimensional coordinate system in the xy-plane if observed from above the xy-plane) is called right-handed or positive. 3D Cartesian coordinate handedness. The name derives from the right-hand rule.

  5. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The most external matrix rotates the other two, leaving the second rotation matrix over the line of nodes, and the third one in a frame comoving with the body. There are 3 × 3 × 3 = 27 possible combinations of three basic rotations but only 3 × 2 × 2 = 12 of them can be used for representing arbitrary 3D rotations as Euler angles. These 12 ...

  6. Complex plane - Wikipedia

    en.wikipedia.org/wiki/Complex_plane

    Argand diagram refers to a geometric plot of complex numbers as points z = x + iy using the horizontal x-axis as the real axis and the vertical y-axis as the imaginary axis. [3] Such plots are named after Jean-Robert Argand (1768–1822), although they were first described by Norwegian–Danish land surveyor and mathematician Caspar Wessel ...

  7. Aircraft principal axes - Wikipedia

    en.wikipedia.org/wiki/Aircraft_principal_axes

    The yaw axis has its origin at the center of gravity and is directed towards the bottom of the aircraft, perpendicular to the wings and to the fuselage reference line. Motion about this axis is called yaw. A positive yawing motion moves the nose of the aircraft to the right. [1] [2] The rudder is the primary control of yaw. [3]

  8. Aircraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Aircraft_flight_dynamics

    The body x-axis does not align with the velocity vector, which is the reference direction for wind axes. In other words, wind axes are not principal axes (the mass is not distributed symmetrically about the yaw and roll axes). Consider the motion of an element of mass in position -z, x in the direction of the y-axis, i.e. into the plane of the ...

  9. Isometric projection - Wikipedia

    en.wikipedia.org/wiki/Isometric_projection

    By rotating the cube by 45° on the x-axis, the point (1, 1, 1) will therefore become (1, 0, √ 2) as depicted in the diagram. The second rotation aims to bring the same point on the positive z-axis and so needs to perform a rotation of value equal to the arctangent of 1 ⁄ √ 2 which is approximately 35.264°.