Search results
Results from the WOW.Com Content Network
Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models , and other sequence learning methods.
English: A diagram for a one-unit Long Short-Term Memory (LSTM). From bottom to top : input state, hidden state and cell state, output state. Gates are sigmoïds or hyperbolic tangents. Other operators : element-wise plus and multiplication. Weights are not displayed. Inspired from Understanding LSTM, Blog of C. Olah
That is, LSTM can learn tasks that require memories of events that happened thousands or even millions of discrete time steps earlier. Problem-specific LSTM-like topologies can be evolved. [56] LSTM works even given long delays between significant events and can handle signals that mix low and high-frequency components.
A key breakthrough was LSTM (1995), [note 1] a RNN which used various innovations to overcome the vanishing gradient problem, allowing efficient learning of long-sequence modelling. One key innovation was the use of an attention mechanism which used neurons that multiply the outputs of other neurons, so-called multiplicative units . [ 13 ]
English: Structure of a LSTM (Long Short-term Memory) cell. Orange boxes are activation functions (like sigmoid and tanh), yellow circles are pointwise operations. A linear transformation is used when two arrows merge. When one arrow splits, this is a copy operation.
Hochreiter developed the long short-term memory (LSTM) neural network architecture in his diploma thesis in 1991 leading to the main publication in 1997. [3] [4] LSTM overcomes the problem of numerical instability in training recurrent neural networks (RNNs) that prevents them from learning from long sequences (vanishing or exploding gradient).
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.
Connectionist temporal classification (CTC) is a type of neural network output and associated scoring function, for training recurrent neural networks (RNNs) such as LSTM networks to tackle sequence problems where the timing is variable.