enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phenylalanine hydroxylase - Wikipedia

    en.wikipedia.org/wiki/Phenylalanine_hydroxylase

    Phenylalanine hydroxylase (PAH) (EC 1.14.16.1) is an enzyme that catalyzes the hydroxylation of the aromatic side-chain of phenylalanine to generate tyrosine.PAH is one of three members of the biopterin-dependent aromatic amino acid hydroxylases, a class of monooxygenase that uses tetrahydrobiopterin (BH 4, a pteridine cofactor) and a non-heme iron for catalysis.

  3. Phenylalanine - Wikipedia

    en.wikipedia.org/wiki/Phenylalanine

    Phenylalanine ball and stick model spinning. Phenylalanine (symbol Phe or F) [3] is an essential α-amino acid with the formula C 9 H 11 NO 2.It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine.

  4. Tyrosine - Wikipedia

    en.wikipedia.org/wiki/Tyrosine

    Tyrosine ammonia lyase (TAL) is an enzyme in the natural phenols biosynthesis pathway. It transforms L-tyrosine into p-coumaric acid. Tyrosine is also the precursor to the pigment melanin. Tyrosine (or its precursor phenylalanine) is needed to synthesize the benzoquinone structure which forms part of coenzyme Q10. [23] [24]

  5. Aromatic amino acid - Wikipedia

    en.wikipedia.org/wiki/Aromatic_amino_acid

    In plants, the shikimate pathway first leads to the formation of chorismate, which is the precursor of phenylalanine, tyrosine, and tryptophan.These aromatic amino acids are the precursors of many secondary metabolites, all essential to a plant's biological functions, such as the hormones salicylate and auxin.

  6. Shikimate pathway - Wikipedia

    en.wikipedia.org/wiki/Shikimate_pathway

    The shikimate pathway (shikimic acid pathway) is a seven-step metabolic pathway used by bacteria, archaea, fungi, algae, some protozoans, and plants for the biosynthesis of folates and aromatic amino acids (tryptophan, phenylalanine, and tyrosine). This pathway is not found in mammals.

  7. Phenylpropanoids metabolism - Wikipedia

    en.wikipedia.org/wiki/Phenylpropanoids_metabolism

    In plants, all phenylpropanoids are derived from the amino acids phenylalanine and tyrosine. Phenylalanine ammonia-lyase (PAL, a.k.a. phenylalanine/tyrosine ammonia-lyase) is an enzyme that transforms L-phenylalanine and tyrosine into trans-cinnamic acid and p-coumaric acid, respectively.

  8. Phenylalanine/tyrosine ammonia-lyase - Wikipedia

    en.wikipedia.org/wiki/Phenylalanine/tyrosine...

    (1) L-phenylalanine trans-cinnamate + NH 3 (2) L - tyrosine ⇌ {\displaystyle \rightleftharpoons } trans-p -hydroxycinnamate + NH 3 This enzyme is a member of the aromatic amino acid lyase family.

  9. Phenylalanine ammonia-lyase - Wikipedia

    en.wikipedia.org/wiki/Phenylalanine_ammonia-lyase

    The enzyme phenylalanine ammonia lyase (EC 4.3.1.24) catalyzes the conversion of L-phenylalanine to ammonia and trans-cinnamic acid.: [1] L -phenylalanine = trans -cinnamate + NH 3 Phenylalanine ammonia lyase (PAL) is the first and committed step in the phenyl propanoid pathway and is therefore involved in the biosynthesis of the polyphenol ...