enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ion transport number - Wikipedia

    en.wikipedia.org/wiki/Ion_transport_number

    The practical importance of high (i.e. close to 1) transference numbers of the charge-shuttling ion (i.e. Li+ in lithium-ion batteries) is related to the fact, that in single-ion devices (such as lithium-ion batteries) electrolytes with the transfer number of the ion near 1, concentration gradients do not develop. A constant electrolyte ...

  3. Lithium bis(trifluoromethanesulfonyl)imide - Wikipedia

    en.wikipedia.org/wiki/Lithium_bis(trifluorome...

    It is made up of one Li cation and a bistriflimide anion. Because of its very high solubility in water (> 21 m), LiTFSI has been used as lithium salt in water-in-salt electrolytes for aqueous lithium-ion batteries. [4] [5]

  4. Liquid junction potential - Wikipedia

    en.wikipedia.org/wiki/Liquid_junction_potential

    The EMF of a concentration cell without transport is: E n t = R T F ln ⁡ a 2 a 1 {\displaystyle E_{\mathrm {nt} }={\frac {RT}{F}}\ln {\frac {a_{2}}{a_{1}}}} where a 1 {\displaystyle a_{1}} and a 2 {\displaystyle a_{2}} are activities of HCl in the two solutions, R {\displaystyle R} is the universal gas constant , T {\displaystyle T} is the ...

  5. Separator (electricity) - Wikipedia

    en.wikipedia.org/wiki/Separator_(electricity)

    Diagram of a battery with a polymer separator. A separator is a permeable membrane placed between a battery's anode and cathode.The main function of a separator is to keep the two electrodes apart to prevent electrical short circuits while also allowing the transport of ionic charge carriers that are needed to close the circuit during the passage of current in an electrochemical cell.

  6. Lithium–air battery - Wikipedia

    en.wikipedia.org/wiki/Lithium–air_battery

    However, lithium metal reacts violently with water and thus the aqueous design requires a solid electrolyte interface between the lithium and electrolyte. Commonly, a lithium-conducting ceramic or glass is used, but conductivity are generally low (on the order of 10 −3 S/cm at ambient temperatures).

  7. Lithium iodide - Wikipedia

    en.wikipedia.org/wiki/Lithium_iodide

    Lithium iodide is used as a solid-state electrolyte for high-temperature batteries. It is also the standard electrolyte in artificial pacemakers [6] due to the long cycle life it enables. [7] The solid is used as a phosphor for neutron detection. [8] It is also used, in a complex with Iodine, in the electrolyte of dye-sensitized solar cells.

  8. Structural battery - Wikipedia

    en.wikipedia.org/wiki/Structural_battery

    Embedded batteries represent multifunctional structures where lithium-ion battery cells are efficiently embedded into a composite structure, and more often sandwich structures. In a sandwich design, state-of-the-art lithium-ion batteries are embedded forming a core material and bonded in between two thin and strong face sheets (e.g. aluminium).

  9. Lithium iron phosphate - Wikipedia

    en.wikipedia.org/wiki/Lithium_iron_phosphate

    The most notable difference between lithium iron phosphate and lead acid is the fact that the lithium battery capacity shows only a small dependence on the discharge rate. With very high discharge rates, for instance 0.8C, the capacity of the lead acid battery is only 60% of the rated capacity.