enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    Torch is used by the Facebook AI Research Group, [8] IBM, [9] Yandex [10] and the Idiap Research Institute. [11] Torch has been extended for use on Android [12] [better source needed] and iOS. [13] [better source needed] It has been used to build hardware implementations for data flows like those found in neural networks. [14]

  3. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    In September 2022, Meta announced that PyTorch would be governed by the independent PyTorch Foundation, a newly created subsidiary of the Linux Foundation. [ 24 ] PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo , a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and ...

  4. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    In computing, CUDA is a proprietary [1] parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for accelerated general-purpose processing, an approach called general-purpose computing on GPUs.

  5. PyTorch Lightning - Wikipedia

    en.wikipedia.org/wiki/PyTorch_Lightning

    PyTorch Lightning is an open-source Python library that provides a high-level interface for PyTorch, a popular deep learning framework. [1] It is a lightweight and high-performance framework that organizes PyTorch code to decouple research from engineering, thus making deep learning experiments easier to read and reproduce.

  6. DeepSpeed - Wikipedia

    en.wikipedia.org/wiki/DeepSpeed

    Features include mixed precision training, single-GPU, multi-GPU, and multi-node training as well as custom model parallelism. The DeepSpeed source code is licensed under MIT License and available on GitHub. [5] The team claimed to achieve up to a 6.2x throughput improvement, 2.8x faster convergence, and 4.6x less communication. [6]

  7. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.

  8. ROCm - Wikipedia

    en.wikipedia.org/wiki/ROCm

    ROCm is free, libre and open-source software (except the GPU firmware blobs [4]), and it is distributed under various licenses. ROCm initially stood for Radeon Open Compute platfor m ; however, due to Open Compute being a registered trademark, ROCm is no longer an acronym — it is simply AMD's open-source stack designed for GPU compute.

  9. Windows Subsystem for Linux - Wikipedia

    en.wikipedia.org/wiki/Windows_Subsystem_for_Linux

    Windows 10 build 16251: Windows 10 version 1709 (Fall Creators Update) WSL 2 (lightweight VM) Windows 10 build 18917: Windows 10 version 2004 (also backported to 1903 and 1909) WSL 2 GPU support: Windows 10 build 20150: Windows 11 (also Windows 10 21H2) WSL 2 GUI support (WSLg) (last version) Windows 10 build 21364: Windows 11