Search results
Results from the WOW.Com Content Network
There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...
Nuclear energy is energy stored in interactions between the particles in the atomic nucleus and is studied in nuclear physics. [25] Electromagnetic energy is in the form of electric charges, magnetic fields, and photons. It is studied in electromagnetism. [26] [27] Various forms of energy in quantum mechanics; e.g., the energy levels of ...
Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time.. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: = =
The energy of a mechanical harmonic oscillator (a mass on a spring) is alternately kinetic and potential energy. At two points in the oscillation cycle it is entirely kinetic, and at two points it is entirely potential. Over a whole cycle, or over many cycles, average energy is equally split between kinetic and potential.
The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...
The force, therefore, is related directly to the difference in potential energy between two different locations in space, [56] and can be considered to be an artifact of the potential field in the same way that the direction and amount of a flow of water can be considered to be an artifact of the contour map of the elevation of an area.
The dichotomy between kinetic energy and potential energy can be traced back to Aristotle's concepts of actuality and potentiality. [3] The principle of classical mechanics that E ∝ mv 2 is conserved was first developed by Gottfried Leibniz and Johann Bernoulli, who described kinetic energy as the living force or vis viva.
The total electrostatic potential energy stored in a capacitor is given by = = = where C is the capacitance, V is the electric potential difference, and Q the charge stored in the capacitor. Outline of proof