Search results
Results from the WOW.Com Content Network
Defining equation (physical chemistry) List of electromagnetism equations; List of equations in classical mechanics; List of equations in quantum mechanics; List of equations in wave theory; List of photonics equations; List of relativistic equations; Relativistic wave equations
The "Six-factor formula" is the neutron life-cycle balance equation, which includes six separate factors, the product of which is equal to the ratio of the number of neutrons in any generation to that of the previous one; this parameter is called the effective multiplication factor k, also denoted by K eff, where k = Є L f ρ L th f η, where ...
The four-factor formula, also known as Fermi's four factor formula is used in nuclear engineering to determine the multiplication of a nuclear chain reaction in an infinite medium. Four-factor formula: k ∞ = η f p ε {\displaystyle k_{\infty }=\eta fp\varepsilon } [ 1 ]
The stages of binary fission in a liquid drop model. Energy input deforms the nucleus into a fat "cigar" shape, then a "peanut" shape, followed by binary fission as the two lobes exceed the short-range nuclear force attraction distance, and are then pushed apart and away by their electrical charge. In the liquid drop model, the two fission ...
Nuclear reactions may be shown in a form similar to chemical equations, for which invariant mass must balance for each side of the equation, and in which transformations of particles must follow certain conservation laws, such as conservation of charge and baryon number (total atomic mass number). An example of this notation follows:
The multiplication factor, k, is defined as (see nuclear chain reaction): k = number of neutrons in one generation / number of neutrons in preceding generation . If k is greater than 1, the chain reaction is supercritical, and the neutron population will grow exponentially.
Yield vs. Z - This is a typical distribution for the fission of uranium. Note that in the calculations used to make this graph the activation of fission products was ignored and the fission was assumed to occur in a single moment rather than a length of time. In this bar chart results are shown for different cooling times (time after fission).
To calculate the binding energy we use the formula Z (m p + m e) + N m n − m nuclide where Z denotes the number of protons in the nuclides and N their number of neutrons. We take m p = 938.272 0813 (58) MeV/ c 2 , m e = 0.510 998 9461 (30) MeV/ c 2 and m n = 939.565 4133 (58) MeV/ c 2 .