Search results
Results from the WOW.Com Content Network
A literal is either a variable (in which case it is called a positive literal) or the negation of a variable (called a negative literal). A clause is a disjunction of literals (or a single literal). A clause is called a Horn clause if it contains at most one positive literal.
In propositional calculus a literal is simply a propositional variable or its negation.. In predicate calculus a literal is an atomic formula or its negation, where an atomic formula is a predicate symbol applied to some terms, (, …,) with the terms recursively defined starting from constant symbols, variable symbols, and function symbols.
In the context of functions, the term variable refers commonly to the arguments of the functions. This is typically the case in sentences like "function of a real variable", "x is the variable of the function f: x ↦ f(x)", "f is a function of the variable x" (meaning that the argument of the function is referred to by the variable x).
A constant coefficient, also known as constant term or simply constant, is a quantity either implicitly attached to the zeroth power of a variable or not attached to other variables in an expression; for example, the constant coefficients of the expressions above are the number 3 and the parameter c, involved in 3=c ⋅ x 0.
A coefficient is usually a constant quantity, but the differential coefficient of f is a constant function only if f is a linear function. When f is not linear, its differential coefficient is a function, call it f ′, derived by the differentiation of f, hence, the modern term, derivative. The older usage is now rarely seen.
An anonymous function is a literal for the function type. In contrast to literals, variables or constants are symbols that can take on one of a class of fixed values, the constant being constrained not to change. Literals are often used to initialize variables; for example, in the following, 1 is an integer literal and the three letter string ...
The pseudocode DPLL function only returns whether the final assignment satisfies the formula or not. In a real implementation, the partial satisfying assignment typically is also returned on success; this can be derived by keeping track of branching literals and of the literal assignments made during unit propagation and pure literal elimination.
There is a pattern that allows you to get a table for a function of N variables, having a table for a function of variables. The new table T N + 1 {\displaystyle T_{N}+1} is arranged as a 2 × 2 matrix of T N {\displaystyle T_{N}} tables, and the right upper block of the matrix is cleared.