Search results
Results from the WOW.Com Content Network
Gasses or liquids that move along a pressure gradient can exert forces on objects. Objects can only be pushed by gases or liquids. The correct terminology used depends on whether they are pushed from a pressurized zone towards ambient pressure (blown out) or from ambient pressure towards a low pressure zone (sucked in).
An object which tends to float requires a tension restraint force T in order to remain fully submerged. An object which tends to sink will eventually have a normal force of constraint N exerted upon it by the solid floor. The constraint force can be tension in a spring scale measuring its weight in the fluid, and is how apparent weight is defined.
Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by ...
For an object in uniform circular motion, the net force acting on the object equals: [46] = ^, where is the mass of the object, is the velocity of the object and is the distance to the center of the circular path and ^ is the unit vector pointing in the radial direction outwards from the center. This means that the net force felt by the object ...
Electromagnetic propulsion (EMP) is the principle of accelerating an object by the utilization of a flowing electrical current and magnetic fields.The electrical current is used to either create an opposing magnetic field, or to charge a field, which can then be repelled.
In aerodynamic levitation, the levitation is achieved by floating the object on a stream of gas, either produced by the object or acting on the object. For example, a ping pong ball can be levitated with the stream of air from a vacuum cleaner set on "blow" - exploiting the Coandă effect which keeps it stable in the airstream. With enough ...
When something is exerting force on the ground, the ground will push back with equal force in the opposite direction. In certain fields of applied physics, such as biomechanics, this force by the ground is called 'ground reaction force'; the force by the object on the ground is viewed as the 'action'.
In fluid mechanics, displacement occurs when an object is largely immersed in a fluid, pushing it out of the way and taking its place. The volume of the fluid displaced can then be measured, and from this, the volume of the immersed object can be deduced: the volume of the immersed object will be exactly equal to the volume of the displaced fluid.