Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the probability distribution of a mixed random variable consists of both discrete and continuous components. A mixed random variable does not have a cumulative distribution function that is discrete or everywhere-continuous. An example of a mixed type random variable is the probability of wait time in a queue.
Furthermore, it covers distributions that are neither discrete nor continuous nor mixtures of the two. An example of such distributions could be a mix of discrete and continuous distributions—for example, a random variable that is 0 with probability 1/2, and takes a random value from a normal distribution with probability 1/2.
A mixed random variable is a random variable whose cumulative distribution function is neither discrete nor everywhere-continuous. [10] It can be realized as a mixture of a discrete random variable and a continuous random variable; in which case the CDF will be the weighted average of the CDFs of the component variables. [10]
A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.
On the other hand, neither does it have a probability density function, since the Lebesgue integral of any such function would be zero. In general, distributions can be described as a discrete distribution (with a probability mass function), an absolutely continuous distribution (with a probability density), a singular distribution (with ...
It is possible to represent certain discrete random variables as well as random variables involving both a continuous and a discrete part with a generalized probability density function using the Dirac delta function. (This is not possible with a probability density function in the sense defined above, it may be done with a distribution.)
This distribution has neither a probability density function nor a probability mass function, since although its cumulative distribution function is a continuous function, the distribution is not absolutely continuous with respect to Lebesgue measure, nor does it have any point-masses. It is thus neither a discrete nor an absolutely continuous ...
The 'discrete case' given above is the special case arising when X takes on only countably many values and μ is a probability measure. In fact, the discrete case (although without the restriction to probability measures) is the first step in proving the general measure-theoretic formulation, as the general version follows therefrom by an ...