Search results
Results from the WOW.Com Content Network
3.2 × 10 −5 T (31.869 μT) – strength of Earth's magnetic field at 0° latitude, 0° longitude; 4 × 10 −5 T (40 μT) – walking under a high-voltage power line [9] 5 × 10 −3 T (5 mT) – the strength of a typical refrigerator magnet; 0.3 T – the strength of solar sunspots; 1 T to 2.4 T – coil gap of a typical loudspeaker magnet
The parallel-wound, series connected bifilar coil is how Nikola Tesla patented (512340) it. This way the capacity between the parallel windings is charged by the increased voltage difference (1/2 of the supply voltage) between the series connected windings.
Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance ( 1 / distance 3 ) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]
A three-wire three-phase circuit is usually more economical than an equivalent two-wire single-phase circuit at the same line-to-ground voltage because it uses less conductor material to transmit a given amount of electrical power. [3] Three-phase power is mainly used directly to power large induction motors, other electric motors and other ...
kg −1 ⋅m −2 ⋅A 2 ⋅s 4: Φ E electric flux: volt metre: V⋅m kg⋅m 3 ⋅s −3 ⋅A −1: E electric field strength volt per metre: V/m = N/C kg⋅m⋅A −1 ⋅s −3: D electric displacement field: coulomb per square metre: C/m 2: A⋅s⋅m −2: ε permittivity: farad per metre: F/m kg −1 ⋅m −3 ⋅A 2 ⋅s 4: χ e electric ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A split-phase or single-phase three-wire system is a type of single-phase electric power distribution. It is the alternating current (AC) equivalent of the original Edison Machine Works three-wire direct-current system. Its primary advantage is that, for a given capacity of a distribution system, it saves conductor material over a single-ended ...
An average bolt of negative lightning carries a current of 30 to 50 kiloamperes, transfers a charge of 5 coulombs, and dissipates 500 megajoules of energy (120 kg TNT equivalent, or enough to light a 100-watt light bulb for approximately 2 months). However, an average bolt of positive lightning (from the top of a thunderstorm) may carry a ...