enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleic acid double helix - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_double_helix

    The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...

  3. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    Here, the single-stranded DNA curls around in a long circle stabilized by telomere-binding proteins. [68] At the very end of the T-loop, the single-stranded telomere DNA is held onto a region of double-stranded DNA by the telomere strand disrupting the double-helical DNA and base pairing to one of the two strands.

  4. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    DNA exists as a double-stranded structure, with both strands coiled together to form the characteristic double helix. Each single strand of DNA is a chain of four types of nucleotides. Nucleotides in DNA contain a deoxyribose sugar, a phosphate, and a nucleobase.

  5. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    Double-stranded RNA forms an A-type helical structure, unlike the common B-type conformation taken by double-stranded DNA molecules. The secondary structure of RNA consists of a single polynucleotide. Base pairing in RNA occurs when RNA folds between complementarity regions. Both single- and double-stranded regions are often found in RNA molecules.

  6. Complementarity (molecular biology) - Wikipedia

    en.wikipedia.org/wiki/Complementarity_(molecular...

    A complementary strand of DNA or RNA may be constructed based on nucleobase complementarity. [2] Each base pair, A = T vs. G ≡ C, takes up roughly the same space, thereby enabling a twisted DNA double helix formation without any spatial distortions. Hydrogen bonding between the nucleobases also stabilizes the DNA double helix. [3]

  7. Melting curve analysis - Wikipedia

    en.wikipedia.org/wiki/Melting_curve_analysis

    Melting curve analysis is an assessment of the dissociation characteristics of double-stranded DNA during heating. As the temperature is raised, the double strand begins to dissociate leading to a rise in the absorbance intensity, hyperchromicity. The temperature at which 50% of DNA is denatured is known as the melting temperature. Measurement ...

  8. Nuclear DNA - Wikipedia

    en.wikipedia.org/wiki/Nuclear_DNA

    Nuclear DNA is a nucleic acid, a polymeric biomolecule or biopolymer, found in the nucleus of eukaryotic cells.Its structure is a double helix, with two strands wound around each other, a structure first described by Francis Crick and James D. Watson (1953) using data collected by Rosalind Franklin.

  9. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    For DNA polymerases to function, the double-stranded DNA helix has to be unwound to expose two single-stranded DNA templates for replication. DNA helicases are responsible for unwinding the double-stranded DNA during chromosome replication. Helicases in eukaryotic cells are remarkably complex. [106]