Search results
Results from the WOW.Com Content Network
The flow resistance is defined, analogously to Ohm's law for electrical resistance, [2] as the ratio of applied pressure drop and resulting flow rate: R = Δ p Q {\displaystyle R={\frac {\Delta p}{Q}}} where Δ p {\displaystyle \Delta p} is the applied pressure difference between two ends of the conduit, and Q {\displaystyle Q} the flow rate.
This includes pressure inlet and outlet conditions mainly. Typical examples that utilize this boundary condition include buoyancy driven flows, internal flows with multiple outlets, free surface flows and external flows around objects. [1] An example is flow outlet into atmosphere where pressure is atmospheric.
Back siphonage is not to be confused with backflow; which is the reversed flow of water from the outlet end to the supply end caused by pressure occurring at the outlet end. [51] Also, building codes usually demand a check valve where the water supply enters a building to prevent backflow into the drinking water system.
[4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.
This can occur around cylinders and spheres, for any fluid, cylinder size and fluid speed, provided that the flow has a Reynolds number in the range ~40 to ~1000. [1] In fluid dynamics, an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime. [2]
This means that the generally inferior flow of a reverse-flow head is less of a disadvantage. In the early days of turbo charging a reverse-flow head allowed the compressor outlet of a turbocharger to blow directly into the inlet manifold with either a blow-through or draw-through carburettor and no intercooler. This allowed the use of shorter ...
Reverse flow may refer to: In engine technology a reverse flow cylinder head is one that locates the intake and exhaust ports on the same side of the engine. Reverse logistics, i.e. goods/waste flowing in the distribution network having consumers as point of origin; Reverse electron flow is a mechanism in microbial metabolism
A crossflow head gives better performance than a Reverse-flow cylinder head (though not as good as a uniflow), but the popular explanation put forward for this — that the gases do not have to change direction and hence are moved into and out of the cylinder more efficiently — is a simplification since there is no continuous flow because of valve opening and closing.