enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  3. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    In contrast, the marginal effect of x j on y can be assessed using a correlation coefficient or simple linear regression model relating only x j to y; this effect is the total derivative of y with respect to x j.

  4. Standardized coefficient - Wikipedia

    en.wikipedia.org/wiki/Standardized_coefficient

    Standardization of the coefficient is usually done to answer the question of which of the independent variables have a greater effect on the dependent variable in a multiple regression analysis where the variables are measured in different units of measurement (for example, income measured in dollars and family size measured in number of individuals).

  5. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    The formulas given in the previous section allow one to calculate the point estimates of α and β — that is, the coefficients of the regression line for the given set of data. However, those formulas do not tell us how precise the estimates are, i.e., how much the estimators α ^ {\displaystyle {\widehat {\alpha }}} and β ^ {\displaystyle ...

  6. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    The model is usually put into a more compact form as follows: The regression coefficients β 0, β 1, ..., β m are grouped into a single vector β of size m + 1. For each data point i, an additional explanatory pseudo-variable x 0,i is added, with a fixed value of 1, corresponding to the intercept coefficient β 0.

  7. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In the more general multiple regression model, there are independent variables: = + + + +, where is the -th observation on the -th independent variable.If the first independent variable takes the value 1 for all , =, then is called the regression intercept.

  8. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    Together with the moving-average (MA) model, it is a special case and key component of the more general autoregressive–moving-average (ARMA) and autoregressive integrated moving average (ARIMA) models of time series, which have a more complicated stochastic structure; it is also a special case of the vector autoregressive model (VAR), which ...

  9. Omnibus test - Wikipedia

    en.wikipedia.org/wiki/Omnibus_test

    So the model tested can be defined by: = ⁡ () = + + +, whereas y i is the category of the dependent variable for the i-th observation and x ij is the j independent variable (j=1,2,...k) for that observation, β j is the j-th coefficient of x ij and indicates its influence on and expected from the fitted model .