Search results
Results from the WOW.Com Content Network
Serial concatenated convolutional codes; Shaping codes; Slepian–Wolf coding; Snake-in-the-box; Soft-decision decoder; Soft-in soft-out decoder; Sparse graph code; Srivastava code; Stop-and-wait ARQ; Summation check
The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.
The advantage of choosing a primitive polynomial as the generator for a CRC code is that the resulting code has maximal total block length in the sense that all 1-bit errors within that block length have different remainders (also called syndromes) and therefore, since the remainder is a linear function of the block, the code can detect all 2 ...
Download QR code; Print/export Download as PDF; Printable version; ... This algorithm is critical to modern iteratively-decoded error-correcting codes, ...
Whereas a hard-decision decoder operates on data that take on a fixed set of possible values (typically 0 or 1 in a binary code), the inputs to a soft-decision decoder may take on a whole range of values in-between. This extra information indicates the reliability of each input data point, and is used to form better estimates of the original data.
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
Proof. We need to prove that if you add a burst of length to a codeword (i.e. to a polynomial that is divisible by ()), then the result is not going to be a codeword (i.e. the corresponding polynomial is not divisible by ()).
Note that this example code avoids the need to specify a bit-ordering convention by not using bytes; the input bitString is already in the form of a bit array, and the remainderPolynomial is manipulated in terms of polynomial operations; the multiplication by could be a left or right shift, and the addition of bitString[i+n] is done to the ...