Search results
Results from the WOW.Com Content Network
p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often spoken of as, a single protein) are crucial in vertebrates , where they prevent cancer formation. [ 5 ]
The p53 upregulated modulator of apoptosis (PUMA) also known as Bcl-2-binding component 3 (BBC3), is a pro-apoptotic protein, member of the Bcl-2 protein family. [5] [6] In humans, the Bcl-2-binding component 3 protein is encoded by the BBC3 gene. [5] [6] The expression of PUMA is regulated by the tumor suppressor p53.
Chk1/2 phosphorylate cdc25 which, in addition to being inhibited, is also sequestered in the cytoplasm by the 14-3-3 proteins. 14-3-3 are upregulated by p53, which, as previously mentioned, is activated by Chk1 and ATM/ATR. p53 also transactivates p21, and both p21 and the 14-3-3 in turn inhibit cyclin B-cdc2 complexes through the ...
One such example of the regulatory role that phosphorylation plays is the p53 tumor suppressor protein. The p53 protein is heavily regulated [28] and contains more than 18 different phosphorylation sites. Activation of p53 can lead to cell cycle arrest, which can be reversed under some circumstances, or apoptotic cell death. [29]
Lymphocytes can enter mitosis when they are activated by mitogens or antigens. B cells specifically can divide when they encounter an antigen matching their immunoglobulin . T cells undergo mitosis when stimulated by mitogens to produce small lymphocytes that are then responsible for the production of lymphokines , which are substances that ...
[85] p53 prevents the cell from replicating by stopping the cell cycle at G1, or interphase, to give the cell time to repair; however, it will induce apoptosis if damage is extensive and repair efforts fail. [86] Any disruption to the regulation of the p53 or interferon genes will result in impaired apoptosis and the possible formation of tumors.
p53 can be activated in response to a wide variety of cellular stressors, both oncogenic and non-oncogenic. An important checkpoint in a complex pathway, activated p53 has been shown to bind DNA and transcriptionally regulate genes that can mediate a variety of cellular growth processes including DNA repair , growth arrest, cellular senescence ...
In the field of genetics, a suicide gene is a gene that will cause a cell to kill itself through the process of apoptosis (programmed cell death). Activation of a suicide gene can cause death through a variety of pathways, but one important cellular "switch" to induce apoptosis is the p53 protein.