enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kepler orbit - Wikipedia

    en.wikipedia.org/wiki/Kepler_orbit

    An elliptic Kepler orbit with an eccentricity of 0.7, a parabolic Kepler orbit and a hyperbolic Kepler orbit with an eccentricity of 1.3. The distance to the focal point is a function of the polar angle relative to the horizontal line as given by the equation ( 13 )

  3. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    Orbit Center-to-center distance Altitude above the Earth's surface Speed Orbital period Specific orbital energy; Earth's own rotation at surface (for comparison— not an orbit) 6,378 km: 0 km: 465.1 m/s (1,674 km/h or 1,040 mph) 23 h 56 min 4.09 sec: −62.6 MJ/kg: Orbiting at Earth's surface (equator) theoretical 6,378 km: 0 km

  4. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    For instance, a small body in circular orbit 10.5 cm above the surface of a sphere of tungsten half a metre in radius would travel at slightly more than 1 mm/s, completing an orbit every hour. If the same sphere were made of lead the small body would need to orbit just 6.7 mm above the surface for sustaining the same orbital period.

  5. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Kepler's first law states that: The orbit of every planet is an ellipse with the sun at one of the two foci. Kepler's first law placing the Sun at one of the foci of an elliptical orbit Heliocentric coordinate system (r, θ) for ellipse.

  6. Radial trajectory - Wikipedia

    en.wikipedia.org/wiki/Radial_trajectory

    The orbit inside a radial shaft in a uniform spherical body [3] would be a simple harmonic motion, because gravity inside such a body is proportional to the distance to the center. If the small body enters and/or exits the large body at its surface the orbit changes from or to one of those discussed above.

  7. Kepler's equation - Wikipedia

    en.wikipedia.org/wiki/Kepler's_equation

    In orbital mechanics, Kepler's equation relates various geometric properties of the orbit of a body subject to a central force. It was derived by Johannes Kepler in 1609 in Chapter 60 of his Astronomia nova , [ 1 ] [ 2 ] and in book V of his Epitome of Copernican Astronomy (1621) Kepler proposed an iterative solution to the equation.

  8. Kepler-186f - Wikipedia

    en.wikipedia.org/wiki/Kepler-186f

    Kepler-186f [2] [3] (also known by its Kepler object of interest designation KOI-571.05) is an Earth-sized exoplanet orbiting within the habitable zone of the red dwarf star Kepler-186, [4] [5] [6] the outermost of five such planets discovered around the star by NASA's Kepler space telescope.

  9. Kepler-62f - Wikipedia

    en.wikipedia.org/wiki/Kepler-62f

    Kepler-62f orbits its host star every 267.29 days at a semi-major axis distance of about 0.718 astronomical units (107,400,000 km, 66,700,000 mi), which is roughly the same as Venus's semi-major axis from the Sun. Compared to Earth, this is about seven-tenths of the distance from it to the Sun. Kepler-62f is estimated to receive about 41% of ...