enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron-withdrawing group - Wikipedia

    en.wikipedia.org/wiki/Electron-withdrawing_group

    Electron-withdrawing groups exert an "inductive" or "electron-pulling" effect on covalent bonds. The strength of the electron-withdrawing group is inversely proportional to the pKa of the carboxylic acid. [2] The inductive effect is cumulative: trichloroacetic acid is 1000x stronger than chloroacetic acid.

  3. Electrophilic aromatic directing groups - Wikipedia

    en.wikipedia.org/wiki/Electrophilic_aromatic...

    Electron donating groups are generally ortho/para directors for electrophilic aromatic substitutions, while electron withdrawing groups (except the halogens) are generally meta directors. The selectivities observed with EDGs and EWGs were first described in 1892 and have been known as the Crum Brown–Gibson rule.

  4. Inductive effect - Wikipedia

    en.wikipedia.org/wiki/Inductive_effect

    In Organic chemistry, the inductive effect in a molecule is a local change in the electron density due to electron-withdrawing or electron-donating groups elsewhere in the molecule, resulting in a permanent dipole in a bond. [1] It is present in a σ (sigma) bond, unlike the electromeric effect which is present in a π (pi) bond.

  5. Captodative effect - Wikipedia

    en.wikipedia.org/wiki/Captodative_effect

    The captodative effect is the stabilization of radicals by a synergistic effect of an electron-withdrawing substituent and an electron-donating substituent. [2] [3] The name originates as the electron-withdrawing group (EWG) is sometimes called the "captor" group, whilst the electron-donating group (EDG) is the "dative" substituent. [3]

  6. Mesomeric effect - Wikipedia

    en.wikipedia.org/wiki/Mesomeric_effect

    The mesomeric effect is negative (–M) when the substituent is an electron-withdrawing group, and the effect is positive (+M) when the substituent is an electron donating group. Below are two examples of the +M and –M effect. Additionally, the functional groups that contribute to each type of resonance are given below.

  7. Electronic effect - Wikipedia

    en.wikipedia.org/wiki/Electronic_effect

    When this center is an electron rich carbanion or an alkoxide anion, the presence of the electron-withdrawing substituent has a stabilizing effect. Similarly, an electron-releasing group (ERG) or electron-donating group (EDG) releases electrons into a reaction center and as such stabilizes electron deficient carbocations.

  8. Electrophilic aromatic substitution - Wikipedia

    en.wikipedia.org/wiki/Electrophilic_aromatic...

    Groups that are electron-withdrawing by resonance decrease the electron density especially at positions 2, 4 and 6, leaving positions 3 and 5 as the ones with comparably higher reactivity, so these types of groups are meta directors (see below).

  9. Methoxy group - Wikipedia

    en.wikipedia.org/wiki/Methoxy_group

    In organic chemistry, a methoxy group is the functional group consisting of a methyl group bound to oxygen. This alkoxy group has the formula R−O−CH 3. On a benzene ring, the Hammett equation classifies a methoxy substituent at the para position as an electron-donating group, but as an electron-withdrawing group if at the meta position.