Search results
Results from the WOW.Com Content Network
For example, when computing x 2 k −1, the binary method requires k−1 multiplications and k−1 squarings. However, one could perform k squarings to get x 2 k and then multiply by x −1 to obtain x 2 k −1. To this end we define the signed-digit representation of an integer n in radix b as
the empty set is an extended binary tree; if T 1 and T 2 are extended binary trees, then denote by T 1 • T 2 the extended binary tree obtained by adding a root r connected to the left to T 1 and to the right to T 2 [clarification needed where did the 'r' go in the 'T 1 • T 2 ' symbol] by adding edges when these sub-trees are non-empty.
A binary expression tree is a specific kind of a binary tree used to represent expressions. Two common types of expressions that a binary expression tree can represent are algebraic [1] and boolean. These trees can represent expressions that contain both unary and binary operators. [1] Like any binary tree, each node of a binary expression tree ...
Two to the power of n, written as 2 n, is the number of values in which the bits in a binary word of length n can be set, where each bit is either of two values. A word, interpreted as representing an integer in a range starting at zero, referred to as an "unsigned integer", can represent values from 0 (000...000 2) to 2 n − 1 (111...111 2) inclusively.
The binary number system expresses any number as a sum of powers of 2, and denotes it as a sequence of 0 and 1, separated by a binary point, where 1 indicates a power of 2 that appears in the sum; the exponent is determined by the place of this 1: the nonnegative exponents are the rank of the 1 on the left of the point (starting from 0), and ...
A tournament tree can be represented as a balanced binary tree by adding sentinels to the input lists (i.e. adding a member to the end of each list with a value of infinity) and by adding null lists (comprising only a sentinel) until the number of lists is a power of two. The balanced tree can be stored in a single array.
Every binary tree with n leaves has height at least log 2 n, with equality when n is a power of two and the tree is a complete binary tree. [28] Relatedly, the Strahler number of a river system with n tributary streams is at most log 2 n + 1. [29]
In computer science, a 2–3 tree is a tree data structure, where every node with children (internal node) has either two children (2-node) and one data element or three children (3-node) and two data elements. A 2–3 tree is a B-tree of order 3. [1] Nodes on the outside of the tree have no children and one or two data elements. [2] [3] 2–3 ...