Search results
Results from the WOW.Com Content Network
A Tolerant Markov model (TMM) is a probabilistic-algorithmic Markov chain model. [6] It assigns the probabilities according to a conditioning context that considers the last symbol, from the sequence to occur, as the most probable instead of the true occurring symbol. A TMM can model three different natures: substitutions, additions or deletions.
Markov decision process (MDP), also called a stochastic dynamic program or stochastic control problem, is a model for sequential decision making when outcomes are uncertain. [ 1 ] Originating from operations research in the 1950s, [ 2 ] [ 3 ] MDPs have since gained recognition in a variety of fields, including ecology , economics , healthcare ...
A Markov process is a stochastic process that satisfies the Markov property ... The classical model of enzyme activity, Michaelis–Menten kinetics, can be viewed as ...
Markov chain central limit theorem; Markov chain mixing time; Markov chain tree theorem; Markov Chains and Mixing Times; Markov chains on a measurable state space; Markov decision process; Markov information source; Markov kernel; Markov chain; Markov property; Markov renewal process; Markov reward model; Markovian arrival process; Matrix ...
A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix. An equivalent formulation describes the process as changing state according to ...
Feller derives the equations under slightly different conditions, starting with the concept of purely discontinuous Markov process and then formulating them for more general state spaces. [5] Feller proves the existence of solutions of probabilistic character to the Kolmogorov forward equations and Kolmogorov backward equations under natural ...
The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model. A Markov random field extends this property to two or more dimensions or to random variables defined for an interconnected network of items. [1] An example of a model for such a field is the Ising model. A discrete ...
Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary Gauss–Markov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.