Search results
Results from the WOW.Com Content Network
In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula −OH and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry , alcohols and carboxylic acids contain one or more hydroxy groups.
The red and white balls represent the hydroxyl group (−OH). The three "R"s stand for carbon substituents or hydrogen atoms. [1] In chemistry, an alcohol (from Arabic al-kuḥl 'the kohl'), [2] is a type of organic compound that carries at least one hydroxyl (−OH) functional group bound to a saturated carbon atom.
Propane-2,2-diol, an example of a geminal diol. A geminal diol has two hydroxyl groups bonded to the same atom. These species arise by hydration of the carbonyl compounds. The hydration is usually unfavorable, but a notable exception is formaldehyde which, in water, exists in equilibrium with methanediol H 2 C(OH) 2
In organic chemistry, phenols, sometimes called phenolics, are a class of chemical compounds consisting of one or more hydroxyl groups (−O H) bonded directly to an aromatic hydrocarbon group. [1] The simplest is phenol, C 6 H 5 OH. Phenolic compounds are classified as simple phenols or polyphenols based on the number of phenol units in the ...
An ester of carboxylic acid.R stands for any group (organic or inorganic) and R′ stands for organyl group.. In chemistry, an ester is a compound derived from an acid (organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group (−OH) of that acid is replaced by an organyl group (−R).
The two hydroxyl groups in a geminal diol are easily converted to a carbonyl or keto group C=O by loss of one water molecule. Conversely, a keto group can combine with water to form the geminal hydroxyl groups. The equilibrium in water solution may be shifted towards either compound. For example, the equilibrium constant for the conversion of ...
Structure of the hydroxyl (-OH) functional group. The suffix –ol is used in organic chemistry principally to form names of organic compounds containing the hydroxyl (–OH) group, mainly alcohols. The suffix was extracted from the word alcohol. The suffix also appears in some trivial names with reference to oils (from Latin oleum, oil).
For example, sugar dissolves in water because both share the hydroxyl functional group (−OH) and hydroxyls interact strongly with each other. Plus, when functional groups are more electronegative than atoms they attach to, the functional groups will become polar, and the otherwise nonpolar molecules containing these functional groups become ...