Search results
Results from the WOW.Com Content Network
Carbon dioxide is an end product of cellular respiration in organisms that obtain energy by breaking down sugars, fats and amino acids with oxygen as part of their metabolism. This includes all plants, algae and animals and aerobic fungi and bacteria.
These varied organic receptors each generate different waste products. Common products are lactic acid, lactose, hydrogen, and ethanol. Carbon dioxide is also commonly produced. [5] Fermentation occurs primarily in anaerobic conditions, although some organisms such as yeast use fermentation even when oxygen is plentiful.
The products of this process are carbon dioxide and water, and the energy transferred is used to make bonds between ADP and a third phosphate group to form ATP (adenosine triphosphate), by substrate-level phosphorylation, NADH and FADH 2.
The reactions of the cycle are carried out by eight enzymes that completely oxidize acetate (a two carbon molecule), in the form of acetyl-CoA, into two molecules each of carbon dioxide and water. Through catabolism of sugars, fats, and proteins, the two-carbon organic product acetyl-CoA is produced which enters the citric acid cycle.
Carbon dioxide, a by-product of cellular respiration, is dissolved in the blood, where it is taken up by red blood cells and converted to carbonic acid by carbonic anhydrase. Most of the carbonic acid then dissociates to bicarbonate and hydrogen ions.
Calvin cycle step 1 (black circles represent carbon atoms) Calvin cycle steps 2 and 3 combined. The enzyme RuBisCO catalyses the carboxylation of ribulose-1,5-bisphosphate, RuBP, a 5-carbon compound, by carbon dioxide (a total of 6 carbons) in a two-step reaction. [6] The product of the first step is enediol-enzyme complex that can capture CO 2 ...
During advanced stages of organic decay, all electron acceptors become depleted except carbon dioxide. Carbon dioxide is a product of most catabolic processes, so it is not depleted like other potential electron acceptors. Only methanogenesis and fermentation can occur in the absence of electron acceptors other than carbon.
In plants, carbon dioxide formed by carbon fixation can join with water in photosynthesis (green) to form organic compounds, which can be used and further converted by both plants and animals. Carbon can form very long chains of interconnecting carbon–carbon bonds , a property that is called catenation .