Search results
Results from the WOW.Com Content Network
Let G be a graph with vertex set V. Let F be a field, and f a function from V to F k such that xy is an edge of G if and only if f(x)·f(y) ≥ t. This is the dot product representation of G. The number t is called the dot product threshold, and the smallest possible value of k is called the dot product dimension. [1]
In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
Also, the dot, cross, and dyadic products can all be expressed in matrix form. Dyadic expressions may closely resemble the matrix equivalents. The dot product of a dyadic with a vector gives another vector, and taking the dot product of this result gives a scalar derived from the dyadic.
Graph theory is the branch of mathematics that examines the properties of mathematical graphs. See glossary of graph theory for common terms and their definition. Informally, this type of graph is a set of objects called vertices (or nodes) connected by links called edges (or arcs), which can also have associated directions. Typically, a graph ...
The generalization of the dot product formula to Riemannian manifolds is a defining property of a Riemannian connection, which differentiates a vector field to give a vector-valued 1-form. Cross product rule
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The left graph shows a green function G that is phase-shifted relative to function F by a time displacement of 𝜏. The middle graph shows the function F and the phase-shifted G represented together as a Lissajous curve. Integrating F multiplied by the phase-shifted G produces the right graph, the cross-correlation across all values of 𝜏.