enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Non-covalent interaction - Wikipedia

    en.wikipedia.org/wiki/Non-covalent_interaction

    The chemical energy released in the formation of non-covalent interactions is typically on the order of 1–5 kcal/mol (1000–5000 calories per 6.02 × 10 23 molecules). [2] Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects. [3] [2]

  3. Molecular binding - Wikipedia

    en.wikipedia.org/wiki/Molecular_binding

    Reversible covalent – a chemical bond is formed, however the free energy difference separating the noncovalently-bonded reactants from bonded product is near equilibrium and the activation barrier is relatively low such that the reverse reaction which cleaves the chemical bond easily occurs; Irreversible covalent – a chemical bond is formed ...

  4. Lone pair - Wikipedia

    en.wikipedia.org/wiki/Lone_pair

    In science, a lone pair refers to a pair of valence electrons that are not shared with another atom in a covalent bond [1] and is sometimes called an unshared pair or non-bonding pair. Lone pairs are found in the outermost electron shell of atoms. They can be identified by using a Lewis structure.

  5. Mechanically interlocked molecular architectures - Wikipedia

    en.wikipedia.org/wiki/Mechanically_interlocked...

    This increase in strength of non-covalent interactions is attributed to the loss of degrees of freedom upon the formation of a mechanical bond. The increase in strength of non-covalent interactions is more pronounced on smaller interlocked systems, where more degrees of freedom are lost, as compared to larger mechanically interlocked systems ...

  6. Cation–π interaction - Wikipedia

    en.wikipedia.org/wiki/Cation–π_interaction

    Similar to these other non-covalent bonds, cation–π interactions play an important role in nature, particularly in protein structure, molecular recognition and enzyme catalysis. The effect has also been observed and put to use in synthetic systems. [1] [2] The π system above and below the benzene ring leads to a quadrupole charge distribution.

  7. Bonding in solids - Wikipedia

    en.wikipedia.org/wiki/Bonding_in_solids

    Intermediate organization of covalent bonds: Regarding the organization of covalent bonds, recall that classic molecular solids, as stated above, consist of small, non-polar covalent molecules. The example given, paraffin wax, is a member of a family of hydrocarbon molecules of differing chain lengths, with high-density polyethylene at the long ...

  8. Non-covalent interactions index - Wikipedia

    en.wikipedia.org/wiki/Non-covalent_interactions...

    The Non-Covalent Interactions index, commonly referred to as simply Non-Covalent Interactions (NCI) is a visualization index based in the Electron density (ρ) and the reduced density gradient (s). It is based on the empirical observation that Non-covalent interactions can be associated with the regions of small reduced density gradient at low ...

  9. Pi-stacking - Wikipedia

    en.wikipedia.org/wiki/Pi-stacking

    In their system, a methylene linker prohibits favorable T-shaped interactions. As in previous models, the relative strength of pi stacking interactions was measured by NMR as the rate of rotation about the biaryl bond, as pi stacking interactions are disrupted in the transition state. Para-substituted rings had small rotational barriers which ...