Search results
Results from the WOW.Com Content Network
The Blasius correlation is the simplest equation for computing the Darcy friction factor. Because the Blasius correlation has no term for pipe roughness, it is valid only to smooth pipes. However, the Blasius correlation is sometimes used in rough pipes because of its simplicity. The Blasius correlation is valid up to the Reynolds number 100000.
Which friction factor is plotted in a Moody diagram may be determined by inspection if the publisher did not include the formula described above: Observe the value of the friction factor for laminar flow at a Reynolds number of 1000. If the value of the friction factor is 0.064, then the Darcy friction factor is plotted in the Moody diagram.
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
Fanning friction factor: f: fluid mechanics (fraction of pressure losses due to friction in a pipe; 1/4th the Darcy friction factor) [9] Froude number: Fr = fluid mechanics (wave and surface behaviour; ratio of a body's inertia to gravitational forces) Galilei number: Ga
The following table gives Reynolds number Re, Darcy friction factor f D, flow rate Q, and velocity V such that hydraulic slope S = h f / L = 0.01, for a variety of nominal pipe (NPS) sizes. Volumetric Flow Q where Hydraulic Slope S is 0.01, for selected Nominal Pipe Sizes (NPS) in PVC [ 14 ] [ 15 ]
Fanning friction factor for tube flow. This friction factor is one-fourth of the Darcy friction factor, so attention must be paid to note which one of these is meant in the "friction factor" chart or equation consulted. Of the two, the Fanning friction factor is the more commonly used by chemical engineers and those following the British ...
Fanning friction factor: f: fluid mechanics (fraction of pressure losses due to friction in a pipe; 1/4th the Darcy friction factor) [13] Fourier number: Fo = heat transfer, mass transfer (ratio of diffusive rate versus storage rate) Froude number: Fr
In this form the law approximates the Darcy friction factor, the energy (head) loss factor, friction loss factor or Darcy (friction) factor Λ in the laminar flow at very low velocities in cylindrical tube. The theoretical derivation of a slightly different form of the law was made independently by Wiedman in 1856 and Neumann and E. Hagenbach ...