Search results
Results from the WOW.Com Content Network
Ohm's law, in the form above, is an extremely useful equation in the field of electrical/electronic engineering because it describes how voltage, current and resistance are interrelated on a "macroscopic" level, that is, commonly, as circuit elements in an electrical circuit. Physicists who study the electrical properties of matter at the ...
Electronic circuits developed for computers also had application to electronic calculators. The Casio Computer Company, in Japan, released the Model 14-A calculator in 1957, which was the world's first all-electric (relatively) compact calculator.
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
In the power systems analysis field of electrical engineering, a per-unit system is the expression of system quantities as fractions of a defined base unit quantity. . Calculations are simplified because quantities expressed as per-unit do not change when they are referred from one side of a transformer to t
Most analysis methods calculate the voltage and current values for static networks, which are circuits consisting of memoryless components only but have difficulties with complex dynamic networks. In general, the equations that describe the behaviour of a dynamic circuit are in the form of a differential-algebraic system of equations (DAEs ...
Electric current can be directly measured with a galvanometer, but this method involves breaking the electrical circuit, which is sometimes inconvenient. Current can also be measured without breaking the circuit by detecting the magnetic field associated with the current. Devices, at the circuit level, use various techniques to measure current:
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...
The volt-ampere (SI symbol: VA, [1] sometimes V⋅A or V A) is the unit of measurement for apparent power in an electrical circuit. It is the product of the root mean square voltage (in volts) and the root mean square current (in amperes). [2] Volt-amperes are usually used for analyzing alternating current (AC) circuits.