Search results
Results from the WOW.Com Content Network
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent depth-first searches are conducted on any nodes that have not yet been found). As usual with depth-first search, the search visits every node of the graph exactly once, refusing to revisit any node that has already been visited.
The edges traversed in this search form a Trémaux tree, a structure with important applications in graph theory. Performing the same search without remembering previously visited nodes results in visiting nodes in the order A, B, D, F, E, A, B, D, F, E, etc. forever, caught in the A, B, D, F, E cycle and never reaching C or G.
Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that can find the shortest path between a designated start node and any member of a set of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the ...
In the paper, [4] the authors develop a new data structure called bag-structure. Bag structure is constructed from the pennant data structure. A pennant is a tree of 2 k nodex, where k is a nonnegative integer. Each root x in this tree contains two pointers x.left and x.right to its children.
The only additional data structure needed by the algorithm is an ordered list L of graph vertices, that will grow to contain each vertex once. If strong components are to be represented by appointing a separate root vertex for each component, and assigning to each vertex the root vertex of its component, then Kosaraju's algorithm can be stated ...
Pays for repairs if you hit guardrails, fences, light poles or other fixed structures. Single-car accidents. Protection if your car rolls over or you have an accident without hitting another vehicle.
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.