Search results
Results from the WOW.Com Content Network
A positive temperature coefficient (PTC) refers to materials that experience an increase in electrical resistance when their temperature is raised. Materials which have useful engineering applications usually show a relatively rapid increase with temperature, i.e. a higher coefficient.
A ceramic heater as a consumer product is a space heater that generates heat using a heating element of ceramic with a positive temperature coefficient (PTC). [1] [2] [failed verification] Ceramic heaters are usually portable and typically used for heating a room or small office, and are of similar utility to metal-element fan heaters.
A positive-temperature-coefficient heating element (PTC heating element), or self-regulating heater, is an electrical resistance heater whose resistance increases significantly with temperature. The name self-regulating heater comes from the tendency of such heating elements to maintain a constant temperature when supplied by a given voltage.
In crystal oscillators for temperature compensation, medical equipment temperature control, and industrial automation, silicon PTC thermistors display a nearly linear positive temperature coefficient (0.7%/°C). A linearization resistor can be added if further linearization is needed. [23]
A heating element is a device used for conversion of electric energy into heat, consisting of a heating resistor and accessories. [1] Heat is generated by the passage of electric current through a resistor through a process known as Joule heating.
Most houseplants prefer a temperature around 60 degrees or a bit higher to grow and stay healthy. And if you live in regions where the temperature is freezing, you also need to think about your ...
The diode voltage has a negative temperature coefficient (i.e. it decreases with increasing temperature), and the junction voltage difference has a positive temperature coefficient. When added in the proportion required to make these coefficients cancel out, the resultant constant value is a voltage equal to the bandgap voltage of the ...
The first term has a negative temperature coefficient; the second term has a positive temperature coefficient (from its ). By an appropriate choice of N {\displaystyle N} and R 1 {\displaystyle R1} and R 2 {\displaystyle R2} , these temperature coefficients can be made to cancel, giving an output voltage that is nearly independent of temperature.