Search results
Results from the WOW.Com Content Network
The effects of temperature on enzyme activity. Top: increasing temperature increases the rate of reaction (Q10 coefficient). Middle: the fraction of folded and functional enzyme decreases above its denaturation temperature. Bottom: consequently, an enzyme's optimal rate of reaction is at an intermediate temperature.
The thermally neutral air temperature for an unprotected resting human is about 28 °C (82 °F), and the thermally neutral temperature in water is about 35 °C (95 °F), much closer to normal body temperature. This difference is due to the very different physical properties of the media.
The effects of temperature on enzyme activity. Top - increasing temperature increases the rate of reaction (Q 10 coefficient). Middle - the fraction of folded and functional enzyme decreases above its denaturation temperature. Bottom - consequently, an enzyme's optimal rate of reaction is at an intermediate temperature.
The major advantage of endothermy over ectothermy is decreased vulnerability to fluctuations in external temperature. Regardless of location (and hence external temperature), endothermy maintains a constant core temperature for optimal enzyme activity. Endotherms control body temperature by internal homeostatic mechanisms.
This results in the inhibition of water reabsorption from the kidney tubules, causing high volumes of very dilute urine to be excreted, thus getting rid of the excess water in the body. Urinary water loss, when the body water homeostat is intact, is a compensatory water loss, correcting any water excess in the body. However, since the kidneys ...
Simplified control circuit of human thermoregulation. [8]The core temperature of a human is regulated and stabilized primarily by the hypothalamus, a region of the brain linking the endocrine system to the nervous system, [9] and more specifically by the anterior hypothalamic nucleus and the adjacent preoptic area regions of the hypothalamus.
Protein backbones are very stable in water at neutral pH and room temperature, although the rate of hydrolysis of different peptide bonds can vary. The half life of a peptide bond under normal conditions can range from 7 years to 350 years, even higher for peptides protected by modified terminus or within the protein interior.
For example under calorie restriction whole body metabolic rate goes down with increasing levels of restriction, but body temperature also follows the same pattern. By manipulating the ambient temperature and exposure to wind it was shown in mice and hamsters that body temperature is a more important modulator of lifespan than metabolic rate. [45]