enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    The modified Thompson Tau test [citation needed] is a method used to determine if an outlier exists in a data set. The strength of this method lies in the fact that it takes into account a data set's standard deviation, average and provides a statistically determined rejection zone; thus providing an objective method to determine if a data ...

  3. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    H 0: There are no outliers in the data set H a: There is exactly one outlier in the data set. The Grubbs test statistic is defined as = =, …, | ¯ | with ¯ and denoting the sample mean and standard deviation, respectively. The Grubbs test statistic is the largest absolute deviation from the sample mean in units of the sample standard deviation.

  4. Dixon's Q test - Wikipedia

    en.wikipedia.org/wiki/Dixon's_Q_test

    Where gap is the absolute difference between the outlier in question and the closest number to it. If Q > Q table, where Q table is a reference value corresponding to the sample size and confidence level, then reject the questionable point. Note that only one point may be rejected from a data set using a Q test.

  5. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1] The choice of the test depends on many properties of the research question. The vast majority of studies can be addressed by 30 of the 100 or so statistical tests in use. [3] [4] [5]

  6. Robust Regression and Outlier Detection - Wikipedia

    en.wikipedia.org/wiki/Robust_Regression_and...

    The book has seven chapters. [1] [4] The first is introductory; it describes simple linear regression (in which there is only one independent variable), discusses the possibility of outliers that corrupt either the dependent or the independent variable, provides examples in which outliers produce misleading results, defines the breakdown point, and briefly introduces several methods for robust ...

  7. Sample maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Sample_maximum_and_minimum

    The sample maximum and minimum are the least robust statistics: they are maximally sensitive to outliers.. This can either be an advantage or a drawback: if extreme values are real (not measurement errors), and of real consequence, as in applications of extreme value theory such as building dikes or financial loss, then outliers (as reflected in sample extrema) are important.

  8. Robust statistics - Wikipedia

    en.wikipedia.org/wiki/Robust_statistics

    Robust statistical methods, of which the trimmed mean is a simple example, seek to outperform classical statistical methods in the presence of outliers, or, more generally, when underlying parametric assumptions are not quite correct.

  9. Interquartile range - Wikipedia

    en.wikipedia.org/wiki/Interquartile_range

    Box-and-whisker plot with four mild outliers and one extreme outlier. In this chart, outliers are defined as mild above Q3 + 1.5 IQR and extreme above Q3 + 3 IQR. The interquartile range is often used to find outliers in data. Outliers here are defined as observations that fall below Q1 − 1.5 IQR or above Q3 + 1.5 IQR.