Search results
Results from the WOW.Com Content Network
The chi-squared distribution is used in the common chi-squared tests for goodness of fit of an observed distribution to a theoretical one, the independence of two criteria of classification of qualitative data, and in finding the confidence interval for estimating the population standard deviation of a normal distribution from a sample standard ...
It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin. The chi distribution describes the positive square roots of a variable obeying a chi-squared distribution.
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...
The chi distribution. The noncentral chi distribution; The chi-squared distribution, which is the sum of the squares of n independent Gaussian random variables. It is a special case of the Gamma distribution, and it is used in goodness-of-fit tests in statistics. The inverse-chi-squared distribution; The noncentral chi-squared distribution
The square of a standard normal random variable has a chi-squared distribution with one degree of freedom. If X is a Student’s t random variable with ν degree of freedom, then X 2 is an F (1,ν) random variable. If X is a double exponential random variable with mean 0 and scale λ, then |X| is an exponential random variable with mean λ.
If the data points are normally distributed with mean 0 and variance , then the residual sum of squares has a scaled chi-squared distribution (scaled by the factor ), with n − 1 degrees of freedom. The degrees-of-freedom, here a parameter of the distribution, can still be interpreted as the dimension of an underlying vector subspace.
The chi-square distribution has (k − c) degrees of freedom, where k is the number of non-empty bins and c is the number of estimated parameters (including location and scale parameters and shape parameters) for the distribution plus one. For example, for a 3-parameter Weibull distribution, c = 4.
The chi-squared test, when used with the standard approximation that a chi-squared distribution is applicable, has the following assumptions: [7] Simple random sample The sample data is a random sampling from a fixed distribution or population where every collection of members of the population of the given sample size has an equal probability ...