enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    The semi-Fibonacci sequence (sequence A030067 in the OEIS) is defined via the same recursion for odd-indexed terms (+) = + and () =, but for even indices () = (), . The bisection A030068 of odd-indexed terms s ( n ) = a ( 2 n − 1 ) {\displaystyle s(n)=a(2n-1)} therefore verifies s ( n + 1 ) = s ( n ) + a ( n ) {\displaystyle s(n+1)=s(n)+a(n ...

  3. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Fibonacci numbers are also strongly related to the golden ratio: Binet's formula expresses the n-th Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases.

  4. Liber Abaci - Wikipedia

    en.wikipedia.org/wiki/Liber_Abaci

    Fibonacci instead would write the same fraction to the left, i.e., . Fibonacci used a composite fraction notation in which a sequence of numerators and denominators shared the same fraction bar; each such term represented an additional fraction of the given numerator divided by the product of all the denominators below and to the right of it.

  5. Reciprocal Fibonacci constant - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_Fibonacci_constant

    The reciprocal Fibonacci constant ψ is the sum of the reciprocals of the Fibonacci numbers: = = = + + + + + + + +. Because the ratio of successive terms tends to the reciprocal of the golden ratio, which is less than 1, the ratio test shows that the sum converges.

  6. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series.Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations on the formal series.

  7. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    In this section we shall use the Fibonacci Box in place of the primitive triple it represents. An infinite ternary tree containing all primitive Pythagorean triples/Fibonacci Boxes can be constructed by the following procedure. [10] Consider a Fibonacci Box containing two, odd, coprime integers x and y in the right-hand column.

  8. Abacus - Wikipedia

    en.wikipedia.org/wiki/Abacus

    By comparing the form of several yupanas, researchers found that calculations were based using the Fibonacci sequence 1, 1, 2, 3, 5 and powers of 10, 20, and 40 as place values for the different fields in the instrument. Using the Fibonacci sequence would keep the number of grains within any one field at a minimum.

  9. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    In number theory, the nth Pisano period, written as π (n), is the period with which the sequence of Fibonacci numbers taken modulo n repeats. Pisano periods are named after Leonardo Pisano, better known as Fibonacci. The existence of periodic functions in Fibonacci numbers was noted by Joseph Louis Lagrange in 1774. [1] [2]