Search results
Results from the WOW.Com Content Network
† can for example be seen to add one particle, because it will add 1 to the eigenvalue of the a-particle number operator, and the momentum of that particle ought to be p since the eigenvalue of the vector-valued momentum operator increases by that much. For these derivations, one starts out with expressions for the operators in terms of the ...
Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0 N D = Number of atoms decayed at time t = + dimensionless dimensionless Decay rate, activity of a radioisotope: A = Bq = Hz = s −1 [T] −1: Decay constant: λ
Defining equation SI unit Dimension Wavefunction: ψ, Ψ To solve from the Schrödinger equation: varies with situation and number of particles Wavefunction probability density: ρ = | | = m −3 [L] −3: Wavefunction probability current: j: Non-relativistic, no external field:
The Hamiltonian of a system represents the total energy of the system; that is, the sum of the kinetic and potential energies of all particles associated with the system. . The Hamiltonian takes different forms and can be simplified in some cases by taking into account the concrete characteristics of the system under analysis, such as single or several particles in the system, interaction ...
The first complete mathematical formulation of this approach, known as the Dirac–von Neumann axioms, is generally credited to John von Neumann's 1932 book Mathematical Foundations of Quantum Mechanics, although Hermann Weyl had already referred to Hilbert spaces (which he called unitary spaces) in his 1927
The Gell-Mann–Nishijima formula (sometimes known as the NNG formula) relates the baryon number B, the strangeness S, the isospin I 3 of quarks and hadrons to the electric charge Q. It was originally given by Kazuhiko Nishijima and Tadao Nakano in 1953, [ 1 ] and led to the proposal of strangeness as a concept, which Nishijima originally ...
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form , or including electromagnetic interactions, it describes all spin-1/2 massive particles , called "Dirac particles", such as electrons and quarks for which parity is a symmetry .
The number of protons in the observable universe is called the Eddington number. In terms of number of particles, some estimates imply that nearly all the matter, excluding dark matter, occurs in neutrinos, which constitute the majority of the roughly 10 86 elementary particles of matter that exist in the visible universe. [11]