enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    If two primes which end in 3 or 7 and surpass by 3 a multiple of 4 are multiplied, then their product will be composed of a square and the quintuple of another square. In other words, if p, q are of the form 20k + 3 or 20k + 7, then pq = x 2 + 5y 2. Euler later extended this to the conjecture that

  3. Congruence of squares - Wikipedia

    en.wikipedia.org/wiki/Congruence_of_squares

    This corresponds to a set of y values whose product is a square number, i.e. one whose factorization has only even exponents. The products of x and y values together form a congruence of squares. This is a classic system of linear equations problem, and can be efficiently solved using Gaussian elimination as soon as the number of rows exceeds ...

  4. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    As an illustration of this, the parity cycle (1 1 0 0 1 1 0 0) and its sub-cycle (1 1 0 0) are associated to the same fraction ⁠ 5 / 7 ⁠ when reduced to lowest terms. In this context, assuming the validity of the Collatz conjecture implies that (1 0) and (0 1) are the only parity cycles generated by positive whole numbers (1 and 2 ...

  5. Square (algebra) - Wikipedia

    en.wikipedia.org/wiki/Square_(algebra)

    The square of an integer may also be called a square number or a perfect square. In algebra, the operation of squaring is often generalized to polynomials, other expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear polynomial x + 1 is the quadratic polynomial (x + 1) 2 = x 2 ...

  6. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    These factorizations work not only over the complex numbers, but also over any field, where either –1, 2 or –2 is a square. In a finite field , the product of two non-squares is a square; this implies that the polynomial x 4 + 1 , {\displaystyle x^{4}+1,} which is irreducible over the integers, is reducible modulo every prime number .

  7. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    Every n in M x can be written as n = m 2 r with positive integers m and r, where r is square-free. Since only the k primes p 1, ..., p k can show up (with exponent 1) in the prime factorization of r, there are at most 2 k different possibilities for r. Furthermore, there are at most √ x possible values for m.

  8. Synthetic division - Wikipedia

    en.wikipedia.org/wiki/Synthetic_division

    Divide the previously dropped/summed number by the leading coefficient of the divisor and place it on the row below (this doesn't need to be done if the leading coefficient is 1). In this case q 3 = a 7 b 4 {\displaystyle q_{3}={\dfrac {a_{7}}{b_{4}}}} , where the index 3 = 7 − 4 {\displaystyle 3=7-4} has been chosen by subtracting the index ...

  9. Dividing a square into similar rectangles - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_square_into...

    However, there are three distinct ways of partitioning a square into three similar rectangles: [1] [2] The trivial solution given by three congruent rectangles with aspect ratio 3:1. The solution in which two of the three rectangles are congruent and the third one has twice the side length of the other two, where the rectangles have aspect ...