enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. F-score - Wikipedia

    en.wikipedia.org/wiki/F-score

    Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...

  3. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    To calculate the recall for a given class, we divide the number of true positives by the prevalence of this class (number of times that the class occurs in the data sample). The class-wise precision and recall values can then be combined into an overall multi-class evaluation score, e.g., using the macro F1 metric. [21]

  4. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    An F-score is a combination of the precision and the recall, providing a single score. There is a one-parameter family of statistics, with parameter β, which determines the relative weights of precision and recall. The traditional or balanced F-score is the harmonic mean of precision and recall:

  5. Binary classification - Wikipedia

    en.wikipedia.org/wiki/Binary_classification

    The F-score combines precision and recall into one number via a choice of weighing, most simply equal weighing, as the balanced F-score . Some metrics come from regression coefficients : the markedness and the informedness , and their geometric mean , the Matthews correlation coefficient .

  6. Accuracy paradox - Wikipedia

    en.wikipedia.org/wiki/Accuracy_paradox

    Even though the accuracy is ⁠ 10 + 999000 / 1000000 ⁠ ≈ 99.9%, 990 out of the 1000 positive predictions are incorrect. The precision of ⁠ 10 / 10 + 990 ⁠ = 1% reveals its poor performance. As the classes are so unbalanced, a better metric is the F1 score = ⁠ 2 × 0.01 × 1 / 0.01 + 1 ⁠ ≈ 2% (the recall being ⁠ 10 + 0 / 10 ...

  7. P4-metric - Wikipedia

    en.wikipedia.org/wiki/P4-metric

    It is calculated from precision, recall, specificity and NPV (negative predictive value). P 4 is designed in similar way to F 1 metric , however addressing the criticisms leveled against F 1 . It may be perceived as its extension.

  8. Fowlkes–Mallows index - Wikipedia

    en.wikipedia.org/wiki/Fowlkes–Mallows_Index

    is the true positive rate, also called sensitivity or recall, and is the positive predictive rate, also known as precision. The minimum possible value of the Fowlkes–Mallows index is 0, which corresponds to the worst binary classification possible, where all the elements have been misclassified.

  9. Phi coefficient - Wikipedia

    en.wikipedia.org/wiki/Phi_coefficient

    In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or r φ) is a measure of association for two binary variables.. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975.