Search results
Results from the WOW.Com Content Network
For a circuit to be modelled with an ideal source, output impedance, and input impedance; the circuit's input reactance can be sized to be the negative of the output reactance at the source. In this scenario, the reactive component of the input impedance cancels the reactive component of the output impedance at the source.
The input impedance of an infinite line is equal to the characteristic impedance since the transmitted wave is never reflected back from the end. Equivalently: The characteristic impedance of a line is that impedance which, when terminating an arbitrary length of line at its output, produces an input impedance of equal value. This is so because ...
Paul Voigt patented a negative feedback amplifier in January 1924, though his theory lacked detail. [4] Harold Stephen Black independently invented the negative-feedback amplifier while he was a passenger on the Lackawanna Ferry (from Hoboken Terminal to Manhattan) on his way to work at Bell Laboratories (located in Manhattan instead of New Jersey in 1927) on August 2, 1927 [5] (US Patent ...
Z-parameters are also known as open-circuit impedance parameters as they are calculated under open circuit conditions. i.e., I x =0, where x=1,2 refer to input and output currents flowing through the ports (of a two-port network in this case) respectively.
In electrical engineering, impedance matching is the practice of designing or adjusting the input impedance or output impedance of an electrical device for a desired value. Often, the desired value is selected to maximize power transfer or minimize signal reflection .
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
In the following cases we will assume that the input and output connections are to ports 1 and 2 respectively which is the most common convention. The nominal system impedance, frequency and any other factors which may influence the device, such as temperature, must also be specified.
Because the amplifier input resistance is small, the driver delivers by current division a current v Thév / R S to the amplifier. The current gain is unity, so the same current is delivered to the output load R L , producing by Ohm's law an output voltage v out = v Thév R L / R S , that is, the first form of the voltage gain above.