Search results
Results from the WOW.Com Content Network
Nitrification is the biological oxidation of ammonia to nitrate via the intermediary nitrite. Nitrification is an important step in the nitrogen cycle in soil. The process of complete nitrification may occur through separate organisms [1] or entirely within one organism, as in comammox bacteria. The transformation of ammonia to nitrite is ...
[12] [13] Complete nitrification, the conversion of ammonia to nitrate in a single step known as comammox, has an energy yield (∆G°′) of −349 kJ mol −1 NH 3, while the energy yields for the ammonia-oxidation and nitrite-oxidation steps of the observed two-step reaction are −275 kJ mol −1 NH 3, and −74 kJ mol −1 NO 2 − ...
Nitrogen-15 (15 N) tracing is a technique to study the nitrogen cycle using the heavier, stable nitrogen isotope 15 N.Despite the different weights, 15 N is involved in the same chemical reactions as the more abundant 14 N and is therefore used to trace and quantify conversions of one nitrogen compound to another.
Additionally, with increasing NH 4 + accumulation in the soil, nitrification processes release hydrogen ions, which acidify the soil. NO 3 − , the product of nitrification, is highly mobile and can be leached from the soil, along with positively charged alkaline minerals such as calcium and magnesium. [ 4 ]
Comammox (COMplete AMMonia OXidation) is the name attributed to an organism that can convert ammonia into nitrite and then into nitrate through the process of nitrification. [1] Nitrification has traditionally been thought to be a two-step process, where ammonia-oxidizing bacteria and archaea oxidize ammonia to nitrite and then nitrite ...
The incorporation of biochar into soil has been investigated to reduce nitrous oxide emissions from ruminant urine patches. Biochar is a carbon-rich compound manufactured from the thermal decomposition of organic matter in oxygen-deprived conditions at relatively low temperatures.
Nitrogen assimilation is the formation of organic nitrogen compounds like amino acids from inorganic nitrogen compounds present in the environment. Organisms like plants, fungi and certain bacteria that can fix nitrogen gas (N 2) depend on the ability to assimilate nitrate or ammonia for their needs.
The column provides numerous gradients, depending on additive nutrients, from which the variety of aforementioned organisms can grow. The aerobic water phase and anaerobic mud or soil phase are one such distinction. Because of oxygen's low solubility in water, the water quickly becomes anoxic towards the interface of the mud and water ...