enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  3. Hypotenuse - Wikipedia

    en.wikipedia.org/wiki/Hypotenuse

    A right triangle with the hypotenuse c. In a right triangle, the hypotenuse is the side that is opposite the right angle, while the other two sides are called the catheti or legs. [7] The length of the hypotenuse can be calculated using the square root function implied by the Pythagorean theorem.

  4. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') [1] is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths.

  5. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the quadrilateral to zero. Brahmagupta's formula gives the area ⁠ K {\displaystyle K} ⁠ of a cyclic quadrilateral whose sides have lengths ⁠ a , {\displaystyle a,} ⁠ ⁠ b , {\displaystyle b,} ⁠ ⁠ c , {\displaystyle c ...

  6. Law of sines - Wikipedia

    en.wikipedia.org/wiki/Law_of_sines

    In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, ⁡ = ⁡ = ⁡ =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.

  7. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

  8. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    The Kepler triangle is a right triangle whose sides are in geometric progression. If the sides are formed from the geometric progression a, ar, ar 2 then its common ratio r is given by r = √ φ where φ is the golden ratio. Its sides are therefore in the ratio 1 : √ φ : φ. Thus, the shape of the Kepler triangle is uniquely determined (up ...

  9. Mollweide's formula - Wikipedia

    en.wikipedia.org/wiki/Mollweide's_formula

    A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d {\displaystyle d} approaches zero, a cyclic quadrilateral converges into a triangle A ′ B ′ C ′ , {\displaystyle \triangle A'B'C',} and the formulas above simplify to the analogous triangle formulas.