Search results
Results from the WOW.Com Content Network
Dispersion is a process by which (in the case of solid dispersing in a liquid) agglomerated particles are separated from each other, and a new interface between the inner surface of the liquid dispersion medium and the surface of the dispersed particles is generated. This process is facilitated by molecular diffusion and convection. [4]
Diffusion is of fundamental importance in many disciplines of physics, chemistry, and biology. Some example applications of diffusion: Sintering to produce solid materials (powder metallurgy, production of ceramics) Chemical reactor design; Catalyst design in chemical industry; Steel can be diffused (e.g., with carbon or nitrogen) to modify its ...
Dispersion (chemistry), a system in which particles are dispersed in a continuous phase of a different composition; Dispersion (geology), a process whereby sodic soil disperses when exposed to water; Dispersion (materials science), the fraction of atoms of a material exposed to the surface; Dispersion polymerization, a polymerization process
The concept of diffusion is widely used in many fields, including physics (particle diffusion), chemistry, biology, sociology, economics, statistics, data science, and finance (diffusion of people, ideas, data and price values). The central idea of diffusion, however, is common to all of these: a substance or collection undergoing diffusion ...
A uniform polymer (often referred to as a monodisperse polymer) is composed of molecules of the same mass. [5] Nearly all natural polymers are uniform. [6] Synthetic near-uniform polymer chains can be made by processes such as anionic polymerization, a method using an anionic catalyst to produce chains that are similar in length.
Reaction–diffusion systems are naturally applied in chemistry. However, the system can also describe dynamical processes of non-chemical nature. Examples are found in biology, geology and physics (neutron diffusion theory) and ecology. Mathematically, reaction–diffusion systems take the form of semi-linear parabolic partial differential ...
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
In materials science, dispersion is the fraction of atoms of a material exposed to the surface. In general, D = N S / N , where D is the dispersion, N S is the number of surface atoms and N T is the total number of atoms of the material. [ 1 ]