Search results
Results from the WOW.Com Content Network
The arrangement of chromatin within the nucleus may also play a role in nuclear stress and restoring nuclear membrane deformation by mechanical stress. When chromatin is condensed, the nucleus becomes more rigid. When chromatin is decondensed, the nucleus becomes more elastic with less force exerted on the inner nuclear membrane. This ...
The cellular components of prokaryotes are not enclosed in membranes within the cytoplasm, like eukaryotic organelles. Bacteria have microcompartments, quasi-organelles enclosed in protein shells such as encapsulin protein cages, [4] [5] while both bacteria and some archaea have gas vesicles. [6] Prokaryotes have simple cell skeletons.
This is an accepted version of this page This is the latest accepted revision, reviewed on 8 December 2024. DNA molecule containing genetic material of a cell This article is about the DNA molecule. For the genetic algorithm, see Chromosome (genetic algorithm). Chromosome (10 7 - 10 10 bp) DNA Gene (10 3 - 10 6 bp) Function A chromosome and its packaged long strand of DNA unraveled. The DNA's ...
The nuclear envelope, also known as the nuclear membrane, [1] [a] is made up of two lipid bilayer membranes that in eukaryotic cells surround the nucleus, which encloses the genetic material. The nuclear envelope consists of two lipid bilayer membranes: an inner nuclear membrane and an outer nuclear membrane. [ 4 ]
The nucleoid (meaning nucleus-like) is an irregularly shaped region within the prokaryotic cell that contains all or most of the genetic material. [1] [2] [3] The chromosome of a typical prokaryote is circular, and its length is very large compared to the cell dimensions, so it needs to be compacted in order to fit.
Though most prokaryotes have both a cell membrane and a cell wall, there are exceptions such as Mycoplasma (bacteria) and Thermoplasma (archaea) which only possess the cell membrane layer. The envelope gives rigidity to the cell and separates the interior of the cell from its environment, serving as a protective filter.
The nuclear lamina consists of two components, lamins and nuclear lamin-associated membrane proteins. The lamins are type V intermediate filaments which can be categorized as either A-type (lamin A, C) or B-type (lamin B 1, B 2) according to homology of their DNA sequences, biochemical properties and cellular localization during the cell cycle.
Telophase is the last stage of the cell cycle in which a cleavage furrow splits the cells cytoplasm (cytokinesis) and chromatin. This occurs through the synthesis of a new nuclear envelope that forms around the chromatin gathered at each pole. The nucleolus reforms as the chromatin reverts back to the loose state it possessed during interphase.