Search results
Results from the WOW.Com Content Network
If f(x) = 0 for all x ≤ a and f(x) = 1 for all x ≥ b, then the function can be taken to represent a cumulative distribution function for a random variable which is neither a discrete random variable (since the probability is zero for each point) nor an absolutely continuous random variable (since the probability density is zero everywhere ...
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic.
In mathematics, the closed graph theorem may refer to one of several basic results characterizing continuous functions in terms of their graphs. Each gives conditions when functions with closed graphs are necessarily continuous. A blog post [1] by T. Tao lists several closed graph theorems throughout mathematics.
Let X denote the real numbers ℝ with the usual Euclidean topology and let Y denote ℝ with the indiscrete topology (where note that Y is not Hausdorff and that every function valued in Y is continuous). Let f : X → Y be defined by f(0) = 1 and f(x) = 0 for all x ≠ 0. Then f : X → Y is continuous but its graph is not closed in X × Y. [4]
Function : is graph continuous if for all there exists a function : such that ((),) is continuous at .. Dasgupta and Maskin named this property "graph continuity" because, if one plots a graph of a player's payoff as a function of his own strategy (keeping the other players' strategies fixed), then a graph-continuous payoff function will result in this graph changing continuously as one varies ...
A mixed random variable is a random variable whose cumulative distribution function is neither discrete nor everywhere-continuous. [10] It can be realized as a mixture of a discrete random variable and a continuous random variable; in which case the CDF will be the weighted average of the CDFs of the component variables. [10]
The function which takes the value 0 for rational number and 1 for irrational number (cf. Dirichlet function) is bounded. Thus, a function does not need to be "nice" in order to be bounded. The set of all bounded functions defined on [ 0 , 1 ] {\displaystyle [0,1]} is much larger than the set of continuous functions on that interval.
The usual proof of the closed graph theorem employs the open mapping theorem.It simply uses a general recipe of obtaining the closed graph theorem from the open mapping theorem; see closed graph theorem § Relation to the open mapping theorem (this deduction is formal and does not use linearity; the linearity is needed to appeal to the open mapping theorem which relies on the linearity.)